Nothing in life is to be feared, it is only to be understood. Now is the time to understand more, so that we may fear less.
                                                                                                                      Marie Curie


2018 - 2020: Drought-fire interactions on secondary Brazilian vegetation.
More than 85% of the Brazilian area was originally covered by three biomes: the Amazon, the Cerrado and the Atlantic forest, all among the most biodiverse in the world. However, land use changes and deforestation have reduced this area to less than 60%, and much of the remaining vegetated areas sustain secondary and disturbed vegetation rather than primary vegetation. In addition, the climate is warming and drying, and the increasing occurrence of extreme heat and drought is already causing an increase in the flammability of forests. This project aims to answer the following questions: How will Brazilian forests change as a result of these stressors? Will undisturbed and regenerating forests respond differently? What is the role of biodiversity in mitigating or increasing their vulnerability to a drier, warmer and more flammable climate? This project is linked to the joint NERC-FAPESP bid BIO-RED (see below) 

The team: I am co-PI, Principal Investigator (PI) is Dr. Simone Vieira (NEPAM, Unicamp, Brazil). Key project partners are Prof Rafael Silva Oliveira (Unicamp), Prof. Beatrwiz Schwantes Marimon (UNEMAT Nova Xavantina), and Dr Marina Correia Scalon (U. Oxford).

2017-2019: Strategies for conserving Cerrado biodiversity and ecology: the role of fire as a management tool. John Fell Fund,Oxford              
This is a pump-priming project that proposes the establishment of an experimental burning program with the aim of setting the grounds for a long-term research program on the fire effects on savanna ecology. After more than 35 years of a complete fire exclusion policy many regions of the Cerrado biome have suffered a substantial woody thickening and the more open savanna formations have disappeared. The experiment would be set in a unique area that has a fascinating rich mosaic of flora and fauna belonging to the Cerrado, Amazon and Pantanal Biomes. The main objective of this proposal is therefore to design and implement an experimental design composed by a series of permanent plots that will be subjected to fire with the aim of answering the following questions: i) how does a 35-year fire protected vegetation structure change after one fire? ii) what are the mortality rates of the main species responsible for woody encroachment after fire? iii) does fire allow the re-introduction of fire-dependant species

The team: I am the PI of this project. Co-I: Prof Maria Antonia Carniello (UNEMAT), Marcelo Feitosa and Luiz Gustavo Goncalves (ICMBio).

2016-2019: BIOmes of Brasil – Resilience, Recovery and Diversity (BIO-RED). NERC-FAPESP
This projects spans the three largest biomes in Brazil, the Atlantic and Amazon Forests, and Cerrado savanna. Together these cover >85% of Brazil’s territory and include many of the most diverse ecosystems on Earth, but all have seen large losses in extent. While the value of their vegetation is increasingly recognized it is unclear to what extent these systems can regenerate or resist the increasing environmental stressors associated with climate change, particularly heating & drying. The motivation of BIO-RED is to understand how these changes affect the ability of intact & regenerating ecosystems to deliver societal benefits. This requires addressing these key questions: (i) How resilient are old-growth & regenerating ecosystems to the key stressors expected from future environmental changes? (ii) Is the destruction a reversible process on time-scales relevant to human society? Thus, will vegetation recover to a similar state as the original and provide similar services? (iii) Will the increasingly hot climate affect the recovery of forests and will modified forests be more vulnerable to future environmental change than intact forests?  Answering these is only possible with a sound understanding how these systems function and what their sensitivities are.

The team: I am co-PI. Other co-PI: Prof Oliver Phillips (U. Leeds), Prof Manuel Gloor (U. Leeds) and Fabien Wagner (INPE). Project collaborators: Prof Yadvinder Malhi (U. Oxford), Dr. David Galbraith (U. Leeds), Dr. Luiz Aragao (INPE), Prof Jos Barlow (U. Lancaster), Dr Marina Correa Scalon (U. Oxford), Prof Beatriz Schwantes Marimon (UNEMAT), Dr. Edmar Oliveira (UNAMET/U/Oxford), Dr. Erika Berenguer (U. Oxford), Dr Joice Ferreira (Embrapa), among others.

Past projects
2017-2018 Improving remote sensing fire monitoring in the Colombian Orinoco Basin (ESPRC-GRCF)

In this project we validated the latest remote sensing products for this isolated region of the world. In the process, we established a new collaboration between the University of Oxford and Universidad Nacional de Colombia. ​At present, data is being processed and prepared for publication.

The team: I was PI of this project ad Prof Dolors Armenteras Pascual was co-PI. Dr. Emma Gardner (Postdoctoral research assistant, U. Oxford), Jessica Grinter (research assistant, U. Oxford), Dr Sami RIfai (U. Oxford), Natalia Salazar (MSc student, UnCol).


2015-2018: Biotic Attributes of the Cerrado-Amazon boundary (Science without borders)

This project with UNEMAT (Universidade Estadual do Mato Grosso) looked at the functional coordination of vegetation types along the semidecidious forest-shrubland savannah gradient in the Cerrado-Amazon ecotone. This project is funding the PhD research of Halina Jaconski (UNEMAT), planned to be completed in 2019. It also funded Dr Marina Correa Scalon as postdoctoral researcher for 1 year, and Silvana Leme’s MSc research.

The team: I was PI of the project with Prof Eliane Ignotii, Prof Beatriz Schwantes Marimon, Prof Ben Hur Marimon Junior, prof Maria Antonia Carniello, prof Rafael Oliveira, Dr. Marina Scalon, Halina Jaconski and Silvana Leme.


2014-2016: Tipping Points of Tropical forest Savanna transitions (Marie Curie, EC)

This project aimed to gather a detailed ecological and ecophysiological understanding of the dynamic process of tropical forest-savanna transition, at a number of sites of South America and Africa. The study was framed in the context of the forest-savanna fire thresholds from a functional trait perspective, with the aim of testing and further developing the role of fire and its interaction with drought and resources

availability. This was achieved through detailed plot surveys to understand and quantify the tree mortality and recruitment processes,and through targeted manipulative experiments to understand and quantify responses to fire, drought, light and nutrient availability.

The team: I was Marie Curie Fellow with Dr Elmar Veenendaal (supervisor). Collaborators: Prof Beatriz Schwantes Marimon, Prof Ben Hur Marimon Junior, Dr Stephen Adu-Bredu (FORIG, Ghana), Theresa Prepah (FORIG Ghana), Agne Gvozdevaite and more than 40 research assistants and committed students that assisted the field campaigns.


2013: Testing the fire trap hypothesis in Ghana, British Ecological Society

This project tested the fire suppression threshold in forest and savannah tree saplings through novel manipulative fire experiments in the forest-savanna transition in Ghana. It collected novel ecological information about differences in the establishment of savanna and forest saplings and their trade-off between fire tolerance and competitive ability. This work is published in Cardoso et al (2016) Ecology and Evolution


2012: Fire behaviour in the Tropical Andes. Spanish Government

The goal of this Project was to develop tools for characterizing fire behaviour in TMCFs from the Peruvian Andes. Unfortunately, due to funding cuts the project could only be undertaken for one year. Nevertheless, results from that year are published in Pastor et al (2017) International Journal of Wildland Fire.

This site was designed with the
website builder. Create your website today.
Start Now